Peptide Targeted by Human Antibodies Associated with HIV Vaccine-Associated Protection Assumes a Dynamic α-Helical Structure

نویسندگان

  • Mohammed S. Aiyegbo
  • Evgeny Shmelkov
  • Lorenzo Dominguez
  • Michael Goger
  • Shibani Battacharya
  • Allan C. deCamp
  • Peter B. Gilbert
  • Phillip W. Berman
  • Timothy Cardozo
چکیده

The only evidence of vaccine-induced protection from HIV acquisition in humans was obtained in the RV144 HIV vaccine clinical trial. One immune correlate of risk in RV144 was observed to be higher titers of vaccine-induced antibodies (Abs) reacting with a 23-mer non-glycosylated peptide with the same amino acid sequence as a segment in the second variable (V2) loop of the MN strain of HIV. We used NMR to analyze the dynamic 3D structure of this peptide. Distance restraints between spatially proximate inter-residue protons were calculated from NOE cross peak intensities and used to constrain a thorough search of all possible conformations of the peptide. α-helical folding was strongly preferred by part of the peptide. A high-throughput structure prediction of this segment in all circulating HIV strains demonstrated that α-helical conformations are preferred by this segment almost universally across all subtypes. Notably, α-helical conformations of this segment of the V2 loop cluster cross-subtype-conserved amino acids on one face of the helix and the variable amino acid positions on the other in a semblance of an amphipathic α-helix. Accordingly, some Abs that protected against HIV in RV144 may have targeted a specific, conserved α-helical peptide epitope in the V2 loop of HIV's surface envelope glycoprotein.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Production and Evaluation of Specific Single-Chain Antibodies against CTLA-4 for Cancer-Targeted Therapy

Background:  Cytotoxic T lymphocyte–associated antigen 4 (CTLA-4) molecules are expressed on T-cells and inhibit their function by inhibiting activation of subsequent T-cell molecular pathways. Blocking of CTLA-4 inhibits the growth of malignant tumor cells. Anti-CTLA-4 monoclonal antibodies activate the immune system against cancer. Due to several advantages of single-chain antibodi...

متن کامل

Selection and Evaluation of Specific Single Chain Antibodies against CD90, a Marker for Mesenchymal and Cancer Stem Cells

Background: CD90, a membrane-associated glycoprotein is a marker used to identify mesenchymal stem cells (MSCs). Recent studies have introduced CD90, which induces tumorigenic activity, as a cancer stem cell (CSC) marker in various malignancies. Blocking CD90 activity with anti-CD90 monoclonal antibodies enhanced anti-tumor effects. To date, highly specific antibody single-chain variable fragme...

متن کامل

Conformational Masking and Receptor-Dependent Unmasking of Highly Conserved Env Epitopes Recognized by Non-Neutralizing Antibodies That Mediate Potent ADCC against HIV-1

The mechanism of antibody-mediated protection is a major focus of HIV-1 vaccine development and a significant issue in the control of viremia. Virus neutralization, Fc-mediated effector function, or both, are major mechanisms of antibody-mediated protection against HIV-1, although other mechanisms, such as virus aggregation, are known. The interplay between virus neutralization and Fc-mediated ...

متن کامل

Bioinspired self-assembled peptide nanofibers with thermostable multivalent α-helices.

The stabilization of peptide's active conformation is a critical determinant of its target binding efficiency. Here we present a structure-based self-assembly strategy for the design of nanostructures with multiple and thermostable α-helices using bioinspired peptide amphiphiles. The design principle was inspired by the oligomerization of the human immunodeficiency virus type-1 (HIV-1) Rev prot...

متن کامل

Structural Basis of HCV Neutralization by Human Monoclonal Antibodies Resistant to Viral Neutralization Escape

The high mutation rate of hepatitis C virus allows it to rapidly evade the humoral immune response. However, certain epitopes in the envelope glycoproteins cannot vary without compromising virus viability. Antibodies targeting these epitopes are resistant to viral escape from neutralization and understanding their binding-mode is important for vaccine design. Human monoclonal antibodies HC84-1 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017